由于能量密度阈值的高低本质上受其合金成分的控制,因此可以通过控制工艺参数,选择确定激光功率保证合适的热输入量,有助于获得稳定的焊接过程。另外,能量密度阈值一定程度上还受到保护气体种类的影响。研究表明,激光焊接铝合金时使用N2气时可较容易地诱导出小孔,而使用He气则不能诱导出小孔。这是因为N2和Al之间可发生放热反应,生成的Al-N-O 三元化合物提高了对激光吸收率。
激光焊接铝合金容易产生的缺陷及消除方法
1.气孔 铝合金激光焊接的主要缺陷之一是气孔,焊缝气孔的形成机理比较复杂,一般认为存在两类气孔:氢气孔和由于小孔的破灭而产生的气孔。氢气孔是由于氢(主要来自表层的湿气与微量水)在熔池金属中的可溶性引起的,激光焊接冷却速度极快,导致氢的溶解度急剧下降形成氢气孔。由于小孔塌陷而形成的孔洞,主要是由于小孔表面张力大于蒸气压力,不能维持稳定而塌陷,液态金属来不及填充就造成孔洞。另外,低熔点、高蒸气压合金元素蒸发导致气孔,表面氧化膜在焊接过程中溶解到熔池中也会形成气孔。 从氢气孔的形成原理可知,表层物质是氢元素的主要来源,因此选择正确的焊前表面预处理可以有效地减少氢气孔的产生。对于由小孔塌陷引发的气孔,则要求选择适当的保护气体并合理控制流量流速,在条件允许下采用高功率、高速度、大离焦量(负值) 的焊接方式,可以进一步消除气孔的产生。
2.热裂纹 铝合金的焊接裂纹都是热裂纹,与冷却时间(或焊接速度)密切有关,主要有结晶裂纹和液化裂纹。铝合金激光焊接产生的结晶裂纹是由于焊缝金属结晶时在晶界处形成低熔点共晶化合物导致的,焊缝金属氧化生成的Al2O3和AlN也会成为微裂纹的扩展源。液化裂纹是熔化的铝合金在凝固过程中局部塑性变形量超过其本身所能承受的变形量的结果。 目前常用的消除热裂纹的方法是使用填充材料,即填丝,这能有效地防止焊接热裂纹,提高接头强度。此外,调整激光能量的输入方式,合理选择脉冲点焊时的脉冲波形,焊缝熔化凝固重复进行,以降低熔池凝固时的凝固速度,这种在凝固过程中增加热循环的控制方法同样可以减少结晶裂纹。
本文链接: 深入了解激光焊接机
相关链接:激光加工的工作原理
版权所有: 非特殊声明均为本站原创文章
转载请注明出处:上海铭琢铭琢激光科技有限公司交流客服QQ:2948342054
欢迎来电咨询:18721801181